Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Mol Diagn ; 24(7): 727-737, 2022 07.
Article in English | MEDLINE | ID: covidwho-1921131

ABSTRACT

Reopening of schools and workplaces during the ongoing coronavirus disease 2019 (COVID-19) pandemic requires affordable and convenient population-wide screening methods. Although upper respiratory swab is considered the preferable specimen for testing, saliva offers several advantages, such as easier collection and lower cost. In this study, we compared the performance of saliva with upper respiratory swab for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection. Paired saliva and anterior nares specimens were collected from a largely asymptomatic cohort of students, faculty, and staff from the University of Pennsylvania. Paired saliva and combined nasopharyngeal/oropharyngeal (NP/OP) specimens were also collected from hospitalized patients with symptomatic COVID-19 following confirmatory testing. All study samples were tested by real-time PCR in the Hospital of the University of Pennsylvania. In the university cohort, positivity rates were 37 of 2500 for saliva (sensitivity, 86.1%) and 36 of 2500 for anterior nares (sensitivity, 83.7%), with an overall agreement of 99.6%. In the hospital study cohort, positivity rates were 35 of 49 for saliva (sensitivity, 89.3%) and 28 of 49 for NP/OP (sensitivity, 75.8%), with an overall agreement of 75.6%. A larger proportion of saliva than NP/OP samples tested positive after 4 days of symptom onset in hospitalized patients. Our results show that saliva has an acceptable sensitivity and is comparable to upper respiratory swab, supporting the use of saliva for SARS-CoV-2 detection in both symptomatic and asymptomatic populations.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Pandemics , SARS-CoV-2/genetics , Saliva , Specimen Handling/methods , Universities
2.
Int J Infect Dis ; 122: 313-320, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1882082

ABSTRACT

OBJECTIVES: Although extended-spectrum cephalosporin-resistant Enterobacterales (ESCrE) and carbapenem-resistant Enterobacterales (CRE) are a global challenge, data on these organisms in low- and middle-income countries are limited. In this study, we sought to characterize colonization data critical for greater antibiotic resistance surveillance efforts. METHODS: This study was conducted in three hospitals and six clinics in Botswana. We conducted ongoing surveillance of adult patients in hospitals and clinics and adults and children in the community. All participants underwent rectal swab sampling to identify ESCrE and CRE. RESULTS: Enrollment occurred from January 15, 2020, to September 4, 2020, but paused from April 2, 2020, to May 21, 2020, because of a countrywide COVID-19 lockdown. Of 5088 individuals approached, 2469 (49%) participated. ESCrE colonization prevalence was 30.7% overall (43% for hospital participants, 31% for clinic participants, 24% for adult community participants, and 26% for child community participants) (P <0.001). A total of 42 (1.7%) participants were colonized with CRE. CRE colonization prevalence was 1.7% overall (6.8% for hospital participants, 0.7% for clinic participants, 0.2% for adult community participants, and 0.5% for child community participants) (P <0.001). ESCrE and CRE prevalence varied substantially across regions and was significantly higher prelockdown versus postlockdown. CONCLUSIONS: ESCrE colonization was high in all settings in Botswana. CRE prevalence in hospitals was also considerable. Colonization prevalence varied by region and clinical setting and decreased after a countrywide lockdown.


Subject(s)
COVID-19 , Enterobacteriaceae Infections , Adult , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Botswana/epidemiology , Carbapenems/pharmacology , Carbapenems/therapeutic use , Cephalosporins , Child , Communicable Disease Control , Delivery of Health Care , Drug Resistance, Microbial , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/epidemiology , Hospitals , Humans
3.
Clin Chem ; 68(1): 230-239, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-1354284

ABSTRACT

BACKGROUND: High-sensitivity severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen assays are desirable to mitigate false negative results. Limited data are available to quantify and track SARS-CoV-2 antigen burden in respiratory samples from different populations. METHODS: We developed the Microbubbling SARS-CoV-2 Antigen Assay (MSAA) with smartphone readout, with a limit of detection of 0.5 pg/mL (10.6 fmol/L) nucleocapsid antigen or 4000 copies/mL inactivated SARS-CoV-2 virus in nasopharyngeal (NP) swabs. We developed a computer vision and machine learning-based automatic microbubble image classifier to accurately identify positives and negatives and quantified and tracked antigen dynamics in intensive care unit coronavirus disease 2019 (COVID-19) inpatients and immunocompromised COVID-19 patients. RESULTS: Compared to qualitative reverse transcription-polymerase chain reaction methods, the MSAA demonstrated a positive percentage agreement of 97% (95% CI 92%-99%) and a negative percentage agreement of 97% (95% CI 94%-100%) in a clinical validation study with 372 residual clinical NP swabs. In immunocompetent individuals, the antigen positivity rate in swabs decreased as days-after-symptom-onset increased, despite persistent nucleic acid positivity. Antigen was detected for longer and variable periods of time in immunocompromised patients with hematologic malignancies. Total microbubble volume, a quantitative marker of antigen burden, correlated inversely with cycle threshold values and days-after-symptom-onset. Viral sequence variations were detected in patients with long duration of high antigen burden. CONCLUSIONS: The MSAA enables sensitive and specific detection of acute infections and quantification and tracking of antigen burden and may serve as a screening method in longitudinal studies to identify patients who are likely experiencing active rounds of ongoing replication and warrant close viral sequence monitoring.


Subject(s)
Antigens, Viral/analysis , COVID-19 Testing/methods , COVID-19 , Smartphone , COVID-19/diagnosis , Humans , Machine Learning , SARS-CoV-2 , Sensitivity and Specificity
4.
Open Forum Infect Dis ; 8(6): ofab235, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1258790

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction (RT-PCR) cycle threshold (Ct) has been used to estimate quantitative viral load, with the goal of targeting isolation precautions for individuals with coronavirus disease 2019 (COVID-19) and guiding public health interventions. However, variability in specimen quality can alter the Ct values obtained from SARS-CoV-2 clinical assays. We sought to define how variable nasopharyngeal (NP) swab quality impacts clinical SARS-CoV-2 test sensitivity. METHODS: We performed amplification of a human gene target (ß-actin) in parallel with a clinical RT-PCR targeting the SARS-CoV-2 ORF1ab gene for 1282 NP specimens collected from patients with clinical concern for COVID-19. We evaluated the relationship between NP specimen quality, characterized by late Ct values for the human gene target ß-actin Ct, and the probability of SARS-CoV-2 detection via logistic regression, as well as the linear relationship between SARS-CoV-2 and ß-actin Ct. RESULTS: Low-quality NP swabs are less likely to detect SARS-CoV-2 (odds ratio, 0.607 [95% credible interval {CrI}, .487-.753]). We observed a positive linear relationship between SARS-CoV-2 and ß-actin Ct values (slope, 0.181 [95% CrI, .097-.264]), consistent with a reduction in detection of 0.181 cycles for each additional cycle of the ß-actin target. COVID-19 disease severity was not associated with ß-actin Ct values. CONCLUSIONS: Variability in NP specimen quality significantly impacts the performance of clinical SARS-CoV-2 assays, and caution should be taken when interpreting quantitative SARS-CoV-2 Ct results. If unrecognized, low-quality NP specimens, which are characterized by a low level of amplifiable human DNA target, may limit the successful application of SARS-CoV-2 Ct values to direct infection control and public health interventions.

5.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1083610

ABSTRACT

Community-based health care clinics and hospital outreach services have the potential to expand coronavirus disease 2019 (COVID-19) diagnostics to rural areas. However, reduced specimen stability during extended transport, the absence of a cold chain to centralized laboratories, and biosafety concerns surrounding specimen handling have limited this expansion. In the following study, we evaluated eNAT (Copan Italia, Brescia, Italy) as an alternative transport system to address the biosafety and stability challenges associated with expanding COVID-19 diagnostics to rural and remote regions. In this study, we demonstrated that high-titer severe acute respiratory virus syndrome coronavirus 2 (SARS-CoV-2) lysate placed into eNAT medium cannot be propagated in cell culture, supporting viral inactivation. To account for off-site testing in these settings, we assessed the stability of contrived nasopharyngeal (NP) specimens stored for up to 14 days in various transport media (eNAT, eSwab, viral transport medium [VTM], saline, and phosphate-buffered saline [PBS]) at 4°C, 22 to 25°C, and 35°C. The molecular detection of SARS-CoV-2 was unaffected by sample storage temperature over the 2 weeks when stored in eNAT or PBS (change in cycle threshold, ≤1). In contrast, variable stability was observed across test conditions for other transport media. As eNAT can inactivate SARS-CoV-2, it may support COVID-19 diagnostics at the point of care. Evaluation of compatibility of eNAT with Cepheid Xpert Xpress SARS-CoV-2 assay demonstrated diagnostic accuracy and sensitivity equivalent to those of VTM. Taken together, these findings suggest that the implementation of eNAT as a collection device can expand COVID-19 testing to areas with limited health care access.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Culture Media , Specimen Handling/standards , Humans , Sensitivity and Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL